ALGEBRA \& TRIGONOMETRY

Enhanced with Graphing Utilities
Seventh Edition

Available in MyMathLab ${ }^{\circledR}$ for Your Precalculus Course

Achieve Your Potential

Success in math can make a difference in your life. MyMathLab is a learning experience with resources to help you achieve your potential in this course and beyond. MyMathLab will help you learn the new skills required, and also help you learn the concepts and make connections for future courses and careers.

Visualization and Conceptual Understanding

These MyMathLab resources will help you think visually and connect the concepts.

NEW! Guided Visualizations

These engaging interactive figures bring mathematical concepts to life, helping students visualize the concepts through directed explorations and purposeful manipulation. Guided Visualizations are assignable in MyMathLab and encourage active learning, critical thinking, and conceptual learning.

EXAMPLE

Finding Vertical Asymptotes
Find the vertical asymptotes, if any, of the graph of exch rational function.

$$
\begin{aligned}
& R(x)=\frac{5 x^{2}}{3+x} \\
& R(x)=\frac{x^{2}-3 x-4}{x^{2}+x+1}=\frac{(x-4)(x+1)}{x^{2}+x+1} \\
& \\
& x^{2}+x+1=0
\end{aligned}
$$

Video Assessment Exercises

Video assessment is tied to key Author in Action videos to check students' conceptual understanding of important math concepts. Students watch a video and work corresponding assessment questions.

Preparedness and Study Skills

MyMathLab ${ }^{\circledR}$ gives access to many learning resources that refresh knowledge of topics previously learned. Getting Ready material, Retain Your Knowledge Exercises, and Note-Taking Guides are some of the tools available.

Getting Ready

Students refresh prerequisite topics through skill review quizzes and personalized homework integrated in MyMathLab. With Getting Ready content in MyMathLab students get just the help they need to be prepared to learn the new material.

Retain Your Knowledge Exercises

New! Retain Your Knowledge Exercises support ongoing review at the course level and help students maintain essential skills.

Guided Lecture Notes

Get help focusing on important concepts with the use of this structured organized note-taking tool. The Guided Lecture Notes are available in MyMathLab for download or as a printed student supplement.

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page(s)
Every Chapter Opener begins with ...			
Chapter-Opening Topic \& Project	Each chapter begins with a discussion of a topic of current interest and ends with a related project.	In the concluding project, you will apply what you have learned to solve a problem related to the topic.	407, 511
Internet-Based Projects	These projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce.	The projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest.	407,511
Every Section begins with			
Learning Objectives 2	Each section begins with a list of objectives. Individual objectives also appear in the text where they are covered.	These objectives focus your studying by emphasizing what's most important and where to find it.	428
Sections contain ...			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review, with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	428
Now Work the 'Are You Prepared?' Problems	These problems assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	428,439
Now Work problems	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	437
WARNING	Warnings are provided in the text.	These point out common mistakes and help you avoid them.	462
Explorations and Seeing the Concept	These graphing utility activities foreshadow a concept or reinforce a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	377,434
In Words	This feature provides alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	430
\triangleleft calculus	This symbol appears next to information essential for the study of calculus.	Pay attention-if you spend extra time now, you'll do better later!	$\begin{array}{r} 236,238, \\ 373 \end{array}$
SHOWCASE EXAMPLES	These examples provide "how to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is employed.	342-343
Model It! Examples and Problems	These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model lt! problems are marked by purple problem numbers.	It is rare for a problem to come in the form "Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models that will enable you to describe the problem mathematically and suggest a solution to the problem.	453,482

Practice "Work the Problems"

Feature	Description	Benefit	Page(s)
'Are You Prepared?' Problems	These problems assess your retention of the prerequisite material. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	428, 439
Concepts and Vocabulary	These short-answer questions, mainly fill-in-the-blank, multiple-choice, and true/false items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	440
Skill Building	Correlated with section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems give you ample opportunity to do so.	440-442
Mixed Practice	These problems offer comprehensive assessment of the skills learned in the section by asking problems related to more than one concept or objective. These problems may also require you to utilize skills learned in previous sections.	Learning mathematics is a building process. Many concepts build on each other and are related. These problems help you see how mathematics builds on itself and how the concepts are linked together.	442
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also enable you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	442-444
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	445
NEW! Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember previously learned skills.	445
Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	$\begin{gathered} 429,437, \\ 438,441 \end{gathered}$
Review Exercises	Every chapter concludes with a comprehensive list of exercises to practice. Use the list of objectives to determine what objective and examples correspond to each problem.	Work these problems to ensure that you understand all the skills and concepts employed in the chapter. Think of it as a comprehensive review of the chapter. All answers to Chapter Review problems appear in the back of the text.	506-509

Review "Study for Quizzes and Tests"

Feature	Description	Benefit	Page(s)
The Chapter Review at the end of each chapter contains ...			
Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	504-505
You Should Be Able to ...	A complete list of objectives by section and, for each, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and work through the example listed, and try again.	505-506
Review Exercises	These provide comprehensive review and practice ofkey skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	506-509
Chapter Test	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the Chapter Test Prep Video.	509
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.	These problem sets are really important. Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.	510
Chapter Projects	The Chapter Projects apply to what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Chapter Projects give you an opportunity to apply what you've learned in the chapter to the opening topic. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way of learning math.	511
Internet-Based Projects	In selected chapters, a Web-based project is given.	These projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest by using the Internet to research and collect data.	511

This page intentionally left blank

ALGEBRA \& TRIGONOMETRY

Enhanced with Graphing Utilities

Seventh Edition

Michael Sullivan
 Chicago State University

Michael Sullivan III

Joliet Junior College

PEARSON

Editor in Chief: Anne Kelly
Acquisitions Editor: Dawn Murrin
Assistant Editor: Joseph Colella
Program Team Lead: Karen Wernholm
Program Manager: Chere Bemelmans
Project Team Lead: Peter Silvia
Project Manager: Peggy McMahon
Associate Media Producer: Marielle Guiney
Senior Project Manager, MyMathLab: Kristina Evans
QA Manager, Assessment Content: Marty Wright
Senior Field Marketing Manager: Peggy Sue Lucas
Product Marketing Manager: Claire Kozar

Senior Author Support/Technology Specialist: Joe Vetere Procurement Manager: Mary Fischer Procurement Specialist: Carol Melville
Text Design: Tamara Newnam
Production Coordination,
Composition, Illustrations: Cenveo ${ }^{\circledR}$ Publisher Services
Associate Director of Design,
USHE EMSS/HSC/EDU: Andrea Nix
Manager, Rights and Permissions: Gina Cheselka
Art Director: Heather Scott
Cover Design: Tamara Newnam
Cover photo: Leigh Prather, Shutterstock

Acknowledgments of third-party content appear on page C 1 , which constitutes an extension of this copyright page.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

MICROSOFT ${ }^{\oplus}$ AND WINDOWS ${ }^{\oplus}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A.AND OTHER COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY,WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND /OR CHANGES IN THE PRODUCT (S) AND /OR THE PROGRAM (S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

The student edition of this text has been cataloged as follows:

Library of Congress Cataloging-in-Publication Data

Sullivan, Michael, 1942-
Algebra \& trigonometry: enhanced with graphing utilities / Michael Sullivan, Chicago
State University, Michael Sullivan III, Joliet Junior College -- Seventh edition. pages cm.
Includes index
ISBN 978-0-13-411926-7

1. Algebra--Textbooks. 2. Trigonometry--Textbooks. 3. Algebra--Graphic methods. 4. Trigonometry-Graphic methods. I. Sullivan, Michael, III, 1967 II. Title. III. Title: Algebra and trigonometry.

QA154.3S75 2017
512'.13--dc23

Copyright © 2017, 2013, 2009, 2006, 2003 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

123456789 10-CRK-17 1615

For the family
Katy (Murphy) and Pat Shannon, Patrick, Ryan

Mike and Yola
Dan and Sheila
Colleen (O'Hara) and Bill Kaleigh, Billy, Timmy

This page intentionally left blank

Contents

Three Distinct Series xix
The Enhanced with Graphing Utilities Series xx
Preface to the Instructor xxi
Resources for Success xxvii
Applications Index xxix
To the Student xxxiv
Review 1
R. 1 Real Numbers 2
Work with Sets • Classify Numbers • Evaluate Numerical Expressions

- Work with Properties of Real Numbers
R. 2 Algebra Essentials 18
Graph Inequalities • Find Distance on the Real Number Line • Evaluate Algebraic Expressions • Determine the Domain of a Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents • Use Scientific Notation
R. 3 Geometry Essentials 31
Use the Pythagorean Theorem and Its Converse • Know Geometry Formulas • Understand Congruent Triangles and Similar Triangles
R. 4 Polynomials 40
Recognize Monomials • Recognize Polynomials • Add and Subtract Polynomials • Multiply Polynomials • Know Formulas for Special Products
- Divide Polynomials Using Long Division • Work with Polynomials in Two Variables
R. 5 Factoring Polynomials 50
Factor the Difference of Two Squares and the Sum and Difference of Two Cubes • Factor Perfect Squares • Factor a Second-Degree Polynomial: $x^{2}+B x+C \bullet$ Factor by Grouping \bullet Factor a Second-Degree Polynomial: $A x^{2}+B x+C, A \neq 1 \cdot$ Complete the Square
R. 6 Synthetic Division 59
Divide Polynomials Using Synthetic Division
R. 7 Rational Expressions 63
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
R. 8 nth Roots; Rational Exponents 74
Work with nth Roots • Simplify Radicals • Rationalize Denominators • Simplify Expressions with Rational Exponents
1 Graphs, Equations, and Inequalities 82
1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations 83Use the Distance Formula • Use the Midpoint Formula • Graphing Equationsby Plotting Points • Graph Equations Using a Graphing Utility • Use a

Graphing Utility to Create Tables • Find Intercepts from a Graph • Use a Graphing Utility to Approximate Intercepts
1.2 Solving Equations Using a Graphing Utility; Linear and Rational Equations

Solve Equations Using a Graphing Utility • Solve Linear Equations • Solve
Rational Equations • Solve Problems That Can Be Modeled by Linear
Equations
1.3 Quadratic Equations 110
Solve Quadratic Equations by Factoring • Solve Quadratic Equations Using the Square Root Method • Solve Quadratic Equations by Completing the Square • Solve Quadratic Equations Using the Quadratic Formula • Solve Problems That Can Be Modeled by Quadratic Equations
1.4 Complex Numbers; Quadratic Equations in the Complex Number System 121
Add, Subtract, Multiply, and Divide Complex Numbers • Solve Quadratic Equations in the Complex Number System
1.5 Radical Equations; Equations Quadratic in Form; Absolute Value Equations; Factorable Equations 129
Solve Radical Equations • Solve Equations Quadratic in Form • Solve Absolute Value Equations • Solve Equations by Factoring
1.6 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Jobs 137
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems • Solve Constant Rate Job Problems
1.7 Solving Inequalities 146
Use Interval Notation • Use Properties of Inequalities • Solve Linear Inequalities Algebraically and Graphically • Solve Combined Inequalities Algebraically and Graphically •Solve Absolute Value Inequalities Algebraically and Graphically
Chapter Review 158
Chapter Test 162
Chapter Projects 163
2 Graphs 164
2.1 Intercepts: Symmetry; Graphing Key Equations 165
Find Intercepts Algebraically from an Equation • Test an Equation for Symmetry • Know How to Graph Key Equations
2.2 Lines 173
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope •Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Write the Equation of a Line in Slope-Intercept Form • Find the Equation of a Line Given Two Points • Graph Lines Written in General Form Using Intercepts • Find Equations of Parallel Lines • Find Equations of Perpendicular Lines
2.3 Circles 189
Write the Standard Form of the Equation of a Circle • Graph a Circle by Hand and by Using a Graphing Utility • Work with the General Form of the Equation of a Circle
2.4 Variation 196
Construct a Model Using Direct Variation • Construct a Model Using Inverse Variation • Construct a Model Using Joint Variation or Combined Variation
Chapter Review 202
Chapter Test 204
Cumulative Review 204
Chapter Project 205
3 Functions and Their Graphs 206
3.1 Functions 207
Determine Whether a Relation Represents a Function • Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
3.2 The Graph of a Function 222
Identify the Graph of a Function • Obtain Information from or about the Graph of a Function
3.3 Properties of Functions 231
Determine Even and Odd Functions from a Graph • Identify Even and Odd Functions from an Equation • Use a Graph to Determine Where a Function Is Increasing, Decreasing, or Constant • Use a Graph to Locate Local Maxima and Local Minima - Use a Graph to Locate the Absolute Maximum and the Absolute Minimum • Use a Graphing Utility to Approximate Local Maxima and Local Minima and to Determine Where a Function Is Increasing or Decreasing • Find the Average Rate of Change of a Function
3.4 Library of Functions; Piecewise-defined Functions 245
Graph the Functions Listed in the Library of Functions • Graph Piecewise- defined Functions
3.5 Graphing Techniques: Transformations 256
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
3.6 Mathematical Models: Building Functions 268Build and Analyze Functions
Chapter Review 273
Chapter Test 277
Cumulative Review 278
Chapter Projects 278
4 Linear and Quadratic Functions 280
4.1 Properties of Linear Functions and Linear Models 281
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
4.2 Building Linear Models from Data 291
Draw and Interpret Scatter Diagrams • Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
4.3 Quadratic Functions and Their Properties 298
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Quadratic Function • Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point • Find the Maximum or Minimum Value of a Quadratic Function
4.4 Build Quadratic Models from Verbal Descriptions and from Data 310 Build Quadratic Models from Verbal Descriptions • Build Quadratic Models from Data
4.5 Inequalities Involving Quadratic Functions 320
Solve Inequalities Involving a Quadratic Function
Chapter Review 324
Chapter Test 327
Cumulative Review 328
Chapter Projects 329
5 Polynomial and Rational Functions 330
5.1 Polynomial Functions and Models
Identify Polynomial Functions and Their Degree - Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity • Analyze the Graph of a Polynomial Function • Build Cubic Models from Data331
5.2 The Real Zeros of a Polynomial Function 351
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function • Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
5.3 Complex Zeros; Fundamental Theorem of Algebra 366
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
5.4 Properties of Rational Functions 372
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find the Horizontal or Oblique Asymptote of a Rational Function
5.5 The Graph of a Rational Function 382
Analyze the Graph of a Rational Function • Solve Applied Problems Involving Rational Functions
5.6 Polynomial and Rational Inequalities 393
Solve Polynomial Inequalities Algebraically and Graphically • Solve Rational Inequalities Algebraically and Graphically
Chapter Review 400
Chapter Test 404
Cumulative Review 404
Chapter Projects 405
6 Exponential and Logarithmic Functions 407
6.1 Composite Functions 408
Form a Composite Function • Find the Domain of a Composite Function
6.2 One-to-One Functions; Inverse Functions 416Determine Whether a Function Is One-to-One • Determine the Inverse of aFunction Defined by a Map or a Set of Ordered Pairs • Obtain the Graph ofthe Inverse Function from the Graph of the Function • Find the Inverse of aFunction Defined by an Equation
6.3 Exponential Functions 428
Evaluate Exponential Functions • Graph Exponential Functions • Define the Number $e \bullet$ Solve Exponential Equations
6.4 Logarithmic Functions 445
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function • Graph Logarithmic Functions • Solve Logarithmic Equations
6.5 Properties of Logarithms 458
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate a Logarithm Whose Base Is Neither 10 Nor e - Graph a Logarithmic Function Whose Base Is Neither 10 Nor e
6.6 Logarithmic and Exponential Equations 467
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
6.7 Financial Models 475
Determine the Future Value of a Lump Sum of Money • Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money

- Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
6.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 484
Find Equations of Populations That Obey the Law of Uninhibited Growth
- Find Equations of Populations That Obey the Law of Decay • Use Newton's Law of Cooling • Use Logistic Models
6.9 Building Exponential, Logarithmic, and Logistic Models from Data 495
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 504
Chapter Test 509
Cumulative Review 510
Chapter Projects 511
7 Trigonometric Functions 512
7.1 Angles and Their Measure 513Convert between Decimal and Degree, Minute, Second Measures forAngles • Find the Length of an Arc of a Circle • Convert from Degrees toRadians and from Radians to Degrees \bullet Find the Area of a Sector of aCircle • Find the Linear Speed of an Object Traveling in CircularMotion
7.2 Right Triangle Trigonometry 527
Find the Values of Trigonometric Functions of Acute Angles • Use Fundamental Identities \bullet Find the Values of the Remaining Trigonometric Functions, Given the Value of One of Them • Use the Complementary Angle Theorem
7.3 Computing the Values of Trigonometric Functions of Acute Angles539
Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{4}=45^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{6}=30^{\circ}$ and $\frac{\pi}{3}=60^{\circ}$
- Use a Calculator to Approximate the Values of the Trigonometric Functions of Acute Angles • Model and Solve Applied Problems Involving Right Triangles7.4 Trigonometric Functions of Any Angle
Find the Exact Values of the Trigonometric Functions for Any Angle • Use Coterminal Angles to Find the Exact Value of a Trigonometric Function
- Determine the Signs of the Trigonometric Functions of an Angle in a Given Quadrant • Find the Reference Angle of an Angle • Use a Reference Angle to Find the Exact Value of a Trigonometric Function • Find the Exact Values of the Trigonometric Functions of an Angle, Given Information about the Functions550
7.5 Unit Circle Approach; Properties of the Trigonometric Functions 561
Find the Exact Values of the Trigonometric Functions Using the Unit Circle
- Know the Domain and Range of the Trigonometric Functions • Use Periodic Properties to Find the Exact Values of the Trigonometric Functions • Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
7.6 Graphs of the Sine and Cosine Functions 572
Graph Functions of the Form $y=A \sin (\omega x)$ Using Transformations \bullet Graph Functions of the Form $y=A \cos (\omega x)$ Using Transformations \bullet Determine the Amplitude and Period of Sinusoidal Functions • Graph Sinusoidal Functions Using Key Points • Find an Equation for a Sinusoidal Graph
7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 587Graph Functions of the Form $y=A \tan (\omega x)+B$ and $y=A \cot (\omega x)+B$- Graph Functions of the Form $y=A \csc (\omega x)+B$ and $y=A \sec (\omega x)+B$
7.8 Phase Shift; Sinusoidal Curve Fitting 595
Graph Sinusoidal Functions of the Form $y=A \sin (\omega x-\phi)+B \cdot$ Build Sinusoidal Models from Data
Chapter Review 606
Chapter Test 611
Cumulative Review 612
Chapter Projects 613
8 Analytic Trigonometry614
8.1 The Inverse Sine, Cosine, and Tangent Functions 615
Find the Exact Value of an Inverse Sine Function • Find an Approximate Value of an Inverse Sine Function • Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions • Find the Inverse Function of a Trigonometric Function • Solve Equations Involving Inverse Trigonometric Functions
8.2 The Inverse Trigonometric Functions (Continued) 629
Find the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions • Define the Inverse Secant, Cosecant, and Cotangent Functions • Use a Calculator to Evaluate $\sec ^{-1} x, \csc ^{-1} x$, and $\cot ^{-1} x \bullet$ Write a Trigonometric Expression as an Algebraic Expression
8.3 Trigonometric Equations 634
Solve Equations Involving a Single Trigonometric Function • Solve Trigonometric Equations Using a Calculator • Solve Trigonometric Equations Quadratic in Form • Solve Trigonometric Equations Using Fundamental Identities • Solve Trigonometric Equations Using a Graphing Utility
8.4 Trigonometric Identities 644
Use Algebra to Simplify Trigonometric Expressions • Establish Identities
8.5 Sum and Difference Formulas
Use Sum and Difference Formulas to Find Exact Values • Use Sum and Difference Formulas to Establish Identities • Use Sum and Difference Formulas Involving Inverse Trigonometric Functions • Solve Trigonometric Equations Linear in Sine and Cosine652
8.6 Double-angle and Half-angle Formulas 664
Use Double-angle Formulas to Find Exact Values • Use Double-angle Formulas to Establish Identities • Use Half-angle Formulas to Find Exact Values
8.7 Product-to-Sum and Sum-to-Product Formulas 675
Express Products as Sums • Express Sums as Products
Chapter Review 679
Chapter Test 682
Cumulative Review 682
Chapter Projects 683
9 Applications of Trigonometric Functions 684
9.1 Applications Involving Right Triangles 685
Solve Right Triangles • Solve Applied Problems
9.2 The Law of Sines 691
Solve SAA or ASA Triangles • Solve SSA Triangles • Solve Applied Problems
9.3 The Law of Cosines 701
Solve SAS Triangles • Solve SSS Triangles • Solve Applied Problems
9.4 Area of a Triangle 708
Find the Area of SAS Triangles • Find the Area of SSS Triangles
9.5 Simple Harmonic Motion; Damped Motion; Combining Waves 715
Build a Model for an Object in Simple Harmonic Motion • Analyze Simple Harmonic Motion • Analyze an Object in Damped Motion • Graph the Sum of Two Functions
Chapter Review 724
Chapter Test 726
Cumulative Review 727
Chapter Projects 728
10 Polar Coordinates; Vectors 730
10.1 Polar Coordinates 731
Plot Points Using Polar Coordinates • Convert from Polar Coordinates to Rectangular Coordinates - Convert from Rectangular Coordinates to Polar Coordinates • Transform Equations between Polar and Rectangular Forms
10.2 Polar Equations and Graphs 740
Identify and Graph Polar Equations by Converting to Rectangular Equations • Graph Polar Equations Using a Graphing Utility • Test Polar Equations for Symmetry • Graph Polar Equations by Plotting Points
10.3 The Complex Plane; De Moivre's Theorem 756
Plot Points in the Complex Plane - Convert a Complex Number between Rectangular Form and Polar Form • Find Products and Quotients of
Complex Numbers in Polar Form • Use De Moivre's Theorem • Find Complex Roots
10.4 Vectors 764
Graph Vectors • Find a Position Vector • Add and Subtract Vectors
Algebraically •Find a Scalar Multiple and the Magnitude of a Vector • Find a Unit Vector • Find a Vector from Its Direction and Magnitude • Model with Vectors
10.5 The Dot Product 779
Find the Dot Product of Two Vectors • Find the Angle between Two Vectors
- Determine Whether Two Vectors Are Parallel • Determine Whether Two Vectors Are Orthogonal • Decompose a Vector into Two Orthogonal Vectors • Compute Work
Chapter Review 786
Chapter Test 789
Cumulative Review 789
Chapter Projects 790
Analytic Geometry 791
11.1 Conics 792Know the Names of the Conics
11.2 The Parabola 793
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
11.3 The Ellipse 803
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
11.4 The Hyperbola 814
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
11.5 Rotation of Axes; General Form of a Conic 828
Identify a Conic • Use a Rotation of Axes to Transform Equations
- Analyze an Equation Using a Rotation of Axes • Identify Conics without a Rotation of Axes
11.6 Polar Equations of Conics 836
Analyze and Graph Polar Equations of Conics • Convert the Polar Equation of a Conic to a Rectangular Equation
11.7 Plane Curves and Parametric Equations 842
Graph Parametric Equations by Hand • Graph Parametric Equations Using a Graphing Utility • Find a Rectangular Equation for a Curve Defined Parametrically • Use Time as a Parameter in Parametric Equations • Find Parametric Equations for Curves Defined by Rectangular Equations
Chapter Review 856
Chapter Test 858
Cumulative Review 859
Chapter Projects 860
12 Systems of Equations and Inequalities861
12.1 Systems of Linear Equations: Substitution and Elimination
Solve Systems of Equations by Substitution • Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables862
12.2 Systems of Linear Equations: Matrices 877
Write the Augmented Matrix of a System of Linear Equations • Write the System of Equations from the Augmented Matrix • Perform Row Operations on a Matrix • Solve a System of Linear Equations Using Matrices
12.3 Systems of Linear Equations: Determinants 893
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
12.4 Matrix Algebra 903
Find the Sum and Difference of Two Matrices \bullet Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix - Solve a System of Linear Equations Using an Inverse Matrix
12.5 Partial Fraction Decomposition 920
Decompose $\frac{P}{Q}$, Where Q Has Only Nonrepeated Linear Factors \bullet Decompose $\frac{P}{Q}$, Where Q Has Repeated Linear Factors • Decompose $\frac{P}{Q}$, Where Q Has a Nonrepeated Irreducible Quadratic Factor • Decompose $\frac{\widehat{P}}{Q}$, Where Q Has aRepeated Irreducible Quadratic Factor
12.6 Systems of Nonlinear Equations 928
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
12.7 Systems of Inequalities 938
Graph an Inequality by Hand • Graph an Inequality Using a Graphing Utility - Graph a System of Inequalities
12.8 Linear Programming 947
Set Up a Linear Programming Problem • Solve a Linear Programming Problem
Chapter Review 954
Chapter Test 958
Cumulative Review 959
Chapter Projects 960
13 Sequences; Induction; the Binomial Theorem 961
13.1 Sequences 962
Write the First Several Terms of a Sequence • Write the Terms of a Sequence Defined by a Recursive Formula - Use Summation Notation •Find the Sum of a Sequence Algebraically and Using a Graphing Utility • Solve Annuity and Amortization Problems
13.2 Arithmetic Sequences 975
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence \bullet Find the Sum of an Arithmetic Sequence
13.3 Geometric Sequences; Geometric Series 982
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence • Find the Sum of a Geometric Sequence • Determine Whether a Geometric Series Converges or Diverges
13.4 Mathematical Induction 992
Prove Statements Using Mathematical Induction
13.5 The Binomial Theorem 996
Evaluate $\binom{n}{j}$ • Use the Binomial Theorem
Chapter Review 1002
Chapter Test 1005
Cumulative Review 1005
Chapter Projects 1006
14 Counting and Probability 1007
14.1 Counting 1008
Find All the Subsets of a Set • Count the Number of Elements in a Set - Solve Counting Problems Using the Multiplication Principle
14.2 Permutations and Combinations 1013
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
14.3 Probability 1022
Construct Probability Models • Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 1032
Chapter Test 1034
Cumulative Review 1035
Chapter Projects 1035
Answers AN1
Credits C1
Index I1

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal-to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Enhanced with Graphing Utilities Series, Seventh Edition

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Using technology, the approach to solving certain problems differs from the Contemporary or Concepts through Functions Series, while the emphasis on understanding concepts and building strong skills does not: College Algebra, Algebra \& Trigonometry, Precalculus.

Contemporary Series, Tenth Edition

The Contemporary Series is the most traditional in approach, yet modern in its treatment of precalculus mathematics. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, Precalculus.

Concepts through Functions Series, Third Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. This approach supports the Rule of Four, which states that functions are represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Enhanced with Graphing Utilities Series

College Algebra

This text provides an approach to college algebra that completely integrates graphing technology without sacrificing mathematical analysis and conceptualization. The text has three chapters of review material preceding the chapters on functions. After completing this text, a student will be prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry

This text contains all the material in College Algebra, but it also develops the trigonometric functions using a right triangle approach and shows how that approach is related to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is integrated throughout. After completing this text, a student will be prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus

This text contains one review chapter before covering the traditional precalculus topics of functions and their graphs, polynomial and rational functions, and exponential and logarithmic functions. The trigonometric functions are introduced using a unit circle approach and show how it is related to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is integrated throughout. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this text, a student will be prepared for finite mathematics, business calculus, and engineering calculus.

Preface to the Instructor

As professors at an urban university and a community college, Michael Sullivan and Michael Sullivan III are aware of the varied needs of Algebra and Trigonometry students. Such students range from those who have little mathematical background and are fearful of mathematics courses, to those with a strong mathematical education and a high level of motivation. For some of your students, this will be their last course in mathematics, whereas others will further their mathematical education. We have written this text with both groups in mind.

As a teacher, and as an author of precalculus, engineering calculus, finite mathematics, and business calculus texts, Michael Sullivan understands what students must know if they are to be focused and successful in upper-level math courses. However, as a father of four, he also understands the realities of college life. As an author of a developmental mathematics series, Michael's son and co-author, Michael Sullivan III, understands the trepidations and skills that students bring to the Algebra and Trigonometry course. As the father of a current college student, Michael III realizes that today's college students demand a variety of media to support their education. This text addresses that demand by providing technology and video support that enhances understanding without sacrificing math skills. Together, both authors have taken great pains to ensure that the text offers solid, student-friendly examples and problems, as well as a clear and seamless writing style.

A tremendous benefit of authoring a successful series is the broad-based feedback we receive from teachers and students. We are sincerely grateful for their support. Virtually every change in this edition is the result of their thoughtful comments and suggestions. We are confident that, building on the success of the first six editions and incorporating many of these suggestions, we have made Algebra \& Trigonometry Enhanced with Graphing Utilities, 7th Edition, an even better tool for learning and teaching. We continue to encourage you to share with us your experiences teaching from this text.

Features in the Seventh Edition

A descriptive list of the many special features of Algebra \& Trigonometry can be found in the front of this text.

This list places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review this and to discuss it with your students at the beginning of your course. When students utilize these features, they are more successful in the course.

New to the Seventh Edition

- Retain Your Knowledge This new category of problems in the exercise set is based on the article "To Retain

New Learning, Do the Math" published in the Edurati Review. In this article, Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." It is frustrating when students cannot recall skills learned earlier in the course. To alleviate this recall problem, we have created "Retain Your Knowledge" problems. These are problems considered to be "final exam material" that students can use to maintain their skills. All the answers to these problems appear in the back of the text, and all are programmed in MyMathLab.

- Guided Lecture Notes Ideal for online, emporium/ redesign courses, inverted classrooms, or traditional lecture classrooms. These lecture notes help students take thorough, organized, and understandable notes as they watch the Author in Action videos. They ask students to complete definitions, procedures, and examples based on the content of the videos and text. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or property. Therefore, many sections have an exploration activity to motivate student learning. These explorations introduce the topic and/or connect it to either a real-world application or a previous section. For example, when the vertical-line test is discussed in Section 3.2, after the theorem statement, the notes ask the students to explain why the vertical-line test works by using the definition of a function. This challenge helps students process the information at a higher level of understanding.
- Illustrations Many of the figures now have captions to help connect the illustrations to the explanations in the body of the text.
- TI Screen Shots In this edition we have replaced all the screen shots from the sixth edition with screen shots using TI-84 Plus C. These updated screen shots help students visualize concepts clearly and help make stronger connections among equations, data, and graphs in full color.
- Exercise Sets All the exercises in the text have been reviewed and analyzed for this edition, some have been removed, and new ones have been added. All timesensitive problems have been updated to the most recent information available. The problem sets remain classified according to purpose.

The 'Are You Prepared?' problems have been improved to better serve their purpose as a just-in-time review of concepts that the student will need to apply in the upcoming section.

The Concepts and Vocabulary problems have been expanded and now include multiple-choice exercises. Together with the fill-in-the-blank and true/false problems, these exercises have been written to serve as reading quizzes.

Skill Building problems develop the student's computational skills with a large selection of exercises that are directly related to the objectives of the section. Mixed Practice problems offer a comprehensive assessment of skills that relate to more than one objective. Often these require skills learned earlier in the course.

Applications and Extensions problems have been updated. Further, many new application-type exercises have been added, especially ones involving information and data drawn from sources the student will recognize, to improve relevance and timeliness.

The Explaining Concepts: Discussion and Writing exercises have been improved and expanded to provide more opportunity for classroom discussion and group projects.

New to this edition, Retain Your Knowledge exercises consist of a collection of four problems in each exercise set that are based on material learned earlier in the course. They serve to keep information that has already been learned "fresh" in the mind of the student. Answers to all these problems appear in the Student Edition.

The Review Exercises in the Chapter Review have been streamlined, but they remain tied to the clearly expressed objectives of the chapter. Answers to all these problems appear in the Student Edition.

- Annotated Instructor's Edition As a guide, the author's suggestions for homework assignments are indicated by a blue underscore below the problem number. These problems are assignable in MyMathLab.

Content Changes in the Seventh Edition

- Section 3.1 The objective Find the Difference Quotient of a Function has been added.
- Section 5.2 The objective Use Descartes' Rule of Signs has been included.
- Section 5.2 The theorem Bounds on the Zeros of a Polynomial Function is now based on the traditional method of using synthetic division.
- Section 5.5 Content has been added that discusses the role of multiplicity of the zeros of the denominator of a rational function as it relates to the graph near a vertical asymptote.

Using the Seventh Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in an Algebra and Trigonometry course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the accompanying figure) and can be omitted without loss of continuity.

Chapter R Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Equations and Inequalities

Primarily a review of intermediate algebra topics, this material is a prerequisite for later topics. The coverage of complex numbers and quadratic equations with a negative discriminant is optional and may be postponed or skipped entirely without loss of continuity.

Chapter 2 Graphs

This chapter lays the foundation for functions. Section 2.4 is optional.

Chapter 3 Functions and Their Graphs

This is perhaps the most important chapter. Section 3.6 is optional.

Chapter 4 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 4.2 and 4.4 may be omitted without loss of continuity.

Chapter 5 Polynomial and Rational Functions

Topic selection depends on your syllabus.

Chapter 6 Exponential and Logarithmic Functions

Sections 6.1-6.6 follow in sequence. Sections 6.7, 6.8, and 6.9 are optional.

Chapter 7 Trigonometric Functions

Section 7.8 may be omitted in a brief course.

Chapter 8 Analytic Trigonometry

Sections 8.2, 8.6, and 8.7 may be omitted in a brief course.
Chapter 9 Applications of Trigonometric Functions Sections 9.4 and 9.5 may be omitted in a brief course.

Chapter 10 Polar Coordinates; Vectors

Sections 10.1-10.3 and Sections 10.4-10.5 are independent and may be covered separately.

Chapter 11 Analytic Geometry

Sections 11.1-11.4 follow in sequence. Sections 11.5, 11.6, and 11.7 are independent of each other, but each requires Sections 11.1-11.4.

Chapter 12 Systems of Equations and Inequalities

 Sections 12.2-12.7 may be covered in any order, but each requires Section 12.1. Section 12.8 requires Section 12.7.
Chapter 13 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 13.1-13.3, Section 13.4, and Section 13.5.

Chapter 14 Counting and Probability

The sections follow in sequence.

Acknowledgments

Texts are written by authors, but they evolve from idea to final form through the efforts of many people.

Thanks are due to the following people for their assistance and encouragement during the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Dawn

Murrin, for her unmatched talent at getting the details right; Joseph Colella for always getting the reviews and pages to us on time; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling liaison between the compositor and author; Peggy Lucas for her genuine interest in marketing this text; Chris Hoag for her continued support and genuine interest; Paul Corey for his leadership and commitment to excellence; and the Pearson Math and Science Sales team for their continued confidence and personal support of our texts.

- Accuracy checkers: C. Brad Davis read the entire manuscript and checked the accuracy of answers. His attention to detail is amazing. Timothy Britt created the Solutions Manuals and accuracy-checked answers.
- Michael Sullivan III would like to thank his colleagues at Joliet Junior College for their support and feedback.

Finally, we offer our sincere thanks to the dedicated users and reviewers of our texts, whose collective insights form the backbone of each text revision.

The list of those to whom we are indebted continues to grow. If we've forgotten anyone, please accept our apology. Thank you to all.

Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College
Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College
Alicia Collins, Mesa Community College
Nelson Collins, Joliet Junior College
Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University
Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University
Donna Costello, Plano Senior High School
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University
Faye Dang, Joliet Junior College
Antonio David, Del Mar College
Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central

Timothy Deis, University of Wisconsin-Platteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Lewis University
Laura Egner, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
Arash Farahmand, Skyline College
W.A. Ferguson, University of Illinois-Urbana/Champaign

Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University
Robert Frank, Westmoreland County Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
James E. Hall, University of Wisconsin-Madison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School
Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School

Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools
Rachael Kenney, North Carolina State University
John B. Klassen, North Idaho College
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University
Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Heidi Lyne, Joliet Junior College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology

Marilyn McCollum, North Carolina State University Jill McGowan, Howard University
Will McGowant, Howard University
Dave McGuire, Joliet Junior College
Angela McNulty, Joliet Junior College
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma
James Maxwell, Oklahoma State University-Stillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Matthew Michaelson, Glendale Community College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College
Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University

Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Victoria Noddings, MiraCosta College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University
Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College
Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
David Ruffato, Joliet Junior College
Dennis C. Runde, Manatee Community College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida
Zachery Sharon, University of Texas at San Antonio
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, OkaloosaWalton Community College
Katrina Staley, North Carolina Agricultural and Technical State University

Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South
Robin Steinberg, Pima Community College
Neil Stephens, Hinsdale South High School
Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
Mary Stinnett, Umpqua Community College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Theresa Thompson, Tulsa Community College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University

Florentina Tone, University of West Florida
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L.Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University
Hayat Weiss, Middlesex Community College

Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
Aletheia Zambesi, University of West Florida
George Zazi, Chicago State University
Steve Zuro, Joliet Junior College

Michael Sullivan
Chicago State University
Michael Sullivan III
Joliet Junior College

Get the most out of MyMathLab

MyMathLab is the world's leading online resource for teaching and learning mathematics. MyMathLab helps students and instructors improve results, and provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.

Personalized Support for Students

- MyMathLab comes with many learning resources-eText, animations, videos, and more-all designed to support your students as they progress through their course.
- The Adaptive Study Plan acts as a personal tutor, updating in real time based on student performance to provide personalized recommendations on what to work on next. With the new Companion Study Plan assignments, instructors can now assign the Study Plan as a prerequisite to a test or quiz, helping to guide students through concepts they need to master.
- Personalized Homework allows instructors to create homework assignments tailored to each student's specific needs, focused on just the topics they have not yet mastered.

Used by nearly 4 million students each year, the MyMathLab and MyStatLab family of products delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.

Resources for Success

 MyMathLab ${ }^{\circledR}$ Online Course for the Enhanced with Graphing Utilities, Series, 7th ed., by Michael Sullivan and Michael Sullivan III (access code required)MyMathLab delivers proven results in helping individual students succeed.
The author team, led by Michael Sullivan and Michael Sullivan III, has developed specific content in MyMathLab to ensure quality resources are available to help foster success in mathematics - and beyond! The MyMathLab features described here will help:

- Review math skills and forgotten concepts
- Retain new concepts while moving through the course
- Develop skills that will help with the transition to college

Supportive Exercise Sets

With Getting Ready content students refresh prerequisite topics through assignable skill review quizzes and personalized homework. New video assessment questions are tied to key Author in Action videos to check students' conceptual understanding of important math concepts. Guided Visualizations help students better understand the visual aspects of key concepts in figure format. The figures are included in MyMathLab as both a teaching and an assignable learning tool.

Encourage Retention

New Retain Your Knowledge quizzes promote ongoing review at the course level and help students maintain essential skills. New functionality within the graphing utility allows graphing of 3-point quadratic functions, 4-point cubic graphs, and transformations in exercises.

Boost Study Skills
Skills for Success Modules are integrated with MyMathLab courses to help students succeed in collegiate courses and prepare for future professions. Topics such as "Time Management," "Stress Management" and "Financial Literacy" are available for you to assign to your students.

Resources for Success

Instructor Resources

Additional resources can be downloaded from
www.mymathlab.com or www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.

Annotated Instructor Edition

Includes all answers to the exercises sets. Shorter answers are on the page beside the exercises, and longer answers are in the back of the text. Sample homework assignments are indicated by a blue underline within each end-of-section exercise set and may be assigned in MyMathLab.

Instructor's Solutions Manual

Includes fully worked solutions to all exercises in the text.

Mini Lecture Notes

This guide includes additional examples and helpful teaching tips, by section.

PowerPoint ${ }^{\circledR}$ Lecture Slides

These files contain fully editable slides correlated with the text.

Test Gen ${ }^{\circledR}$

Test Gen ${ }^{\circledR}$ (www.pearsoned.com/testgen) enables instructor to build, edit, print, and administer tests using a computerized bank of question developed to cover all the objectives of the text.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to promote student success:

Lecture Videos

Author in Action videos are actual classroom lectures with fully worked-out examples presented by Michael Sullivan III. All video is assignable in MyMathLab.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the text. These are available in MyMathLab and on YouTube.

Student Solutions Manual

Provides detailed worked-out solutions to oddnumbered exercises.

Guided Lecture Notes

These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how/why of important concepts through explorations and activities. The Guided Lecture Notes are available as pdfs and customizable Word files in MyMathLab. They can also be packaged with the text and MyMathLab access code.

Algebra Review

Four Chapters of Intermediate Algebra review. Perfect for a slower-paced course or for individual review.

Applications Index

Acoustics
amplifying sound, 507
loudness of sound, 457, 509
loudspeaker, 722
tuning fork, 722
whispering galleries, 810-811
Aerodynamics
modeling aircraft motion, 790
Agriculture
farm management, 953
farm workers in U.S., 494
field enclosure, 936
grazing area for cow, 713-714
minimizing cost, 953
removing stump, 778
watering a field, 119
Air travel
bearing of aircraft, 689
cost of transatlantic, 220-221, 229
distance between two planes, 269-270
frequent flyer miles, 698
holding pattern, 586, 642
intersection point for two planes, 269-270, 854
parking at O'Hare International Airport, 253
revising a flight plan, 706
speed and direction of aircraft, 772-773, 776
Archaeology
age of ancient tools, 487-488
age of fossil, 493
age of tree, 493
date of prehistoric man's death, 508
Architecture
brick staircase, 981, 1004
Burj Khalifa building, 32
floor design, 979, 1004
football stadium seating, 981
mosaic design, 981, 1004
Norman window, 38, 317
One World Trade Center, 549
parabolic arch, 317
racetrack design, 813
special window, 317
stadium construction, 981
window design, 317
window dimensions, 119
Area. See also Geometry
of Bermuda Triangle, 713
of building ground, 713
under a curve, 628
of isosceles triangle, 673
of sector of circle, 523
of segment of circle, 725
Art
fine decorative pieces, 549
framing a painting, 161
Astronomy
angle of elevation of Sun, 688
distance from Earth to its moon, 30
distances of planets from Sun, 974
International Space Station (ISS), 855
light-year, 30
planetary orbits, 810
Earth, 813
elliptical, 813
Jupiter, 813
Mars, 813
Mercury, 842
Neptune, 860
Pluto, 813, 860
Aviation
modeling aircraft motion, 790
orbital launches, 874

Biology
alcohol and driving, 453, 458
bacterial growth, 485-486,500
E-coli, 243, 282
blood types, 1012
bone length, 326
cancer, 443,500
cricket chirp rate and temperature, 319
healing of wounds, 442, 457
maternal age versus Down syndrome, 297
yeast biomass as function of time, 499
Business
advertising, 326
automobile production, 414, 891
blending coffee, 144, 161
cable rates, 502
candy bar size, 119
car rentals, 288
checkout lines, 1031
clothing store, 1033
cookie orders, 957-958
cost
of can, 389-390, 392
of charter bus, 161
of commodity, 415
of manufacturing, 30, 144, 229, 399, 946
marginal, 308-309, 326
minimizing, 326, 953
of printing textbooks, 345-346
of production, $242,414,918,958$
of theater ticket per student, 400
of transporting goods, 254
cost equation, 186-187, 200
cost function, 289
average, 225
demand
for candy, 200
for jeans, 297
demand equation, $325,327,405$
depreciation, 407
discounts, 109, 415
drive-thru rate
at Burger King, 438-439
at Citibank, 443, 457
at McDonald's, 443
equipment depreciation, 990
expense computation, 145
Jiffy Lube's car arrival rate, 443, 457
managing a meat market, 953
milk production, 501
mixing candy, 144
mixing nuts, 144
orange juice production, 891
precision ball bearings, 30
presale order, 874
price markup, 109
of new car, 157
price vs. quantity demanded, 290
product design, 954
production scheduling, 953
product promotion, 187
profit, 918-919
maximizing, 951-952, 953-954
profit function, 221
rate of return on, 482
restaurant management, 874
revenue, 144, 308, 323
airline, 954
of clothing store, 907-908
daily, 309
from digital music, 267
maximizing, 308, 316
monthly, 309
online advertising, 503
from seating, 991
theater, 875
revenue equation, 200
RV rental, 327
salary, 981
gross, 220, 415
increases in, 990, 1004
sales
commission on, 157,325
of movie theater ticket, 862, 866-867, 874
net, 98
salvage value, 508
straight-line depreciation, 285-286, 289
supply and demand, 286-287,289
tax, 399
theater attendance, 109
toy truck manufacturing, 946
transporting goods, 946
truck rentals, 186, 290
unemployment, 1034
wages
of car salesperson, 187
hourly, 106, 108
Word users, 494
Calculus
area under a curve, 267,628
area under graph, 242
carrying a ladder around a corner, 642-643
maximizing rain gutter construction, 673
projectile motion, 642
Simpson's rule, 317
Carpentry. See also Construction pitch, 188
Chemistry, 108
alpha particles, 827
decomposition reactions, 493
drug concentration, 391
ethanol production, 500
gas laws, 201
pH, 456
purity of gold, 145
radioactive decay, $492,493,500-501,508,509,954$
radioactivity from Chernobyl, 493
reactions, 317
solutions, 874
salt, 145, 161
sugar molecules, 145
volume of gas, 156
Combinatorics
airport codes, 1014
binary codes, 1033
birthday permutations, 1016, 1020, 1027-1028,
1032,1034
blouses and skirts combinations, 1012
book arrangements, 1020
box stacking, 1020
code formation, 1020
combination locks, 1021
committee formation, 1018, 1020, 1021, 1034
Senate committees, 1021
flag arrangement, 1019, 1033
letter codes, 1014
license plate possibilities, 1020, 1033, 1034
lining up people, 1015, 1020
number formation, 1012, 1020, 1021, 1034
objects selection, 1021
seating arrangements, 1033
shirts and ties combinations, 1012
telephone numbers, 1033
two-symbol codewords, 1011
word formation, 1018-1019, 1021, 1034

Communications
cell phone towers, 502
data plan, 229, 242-243
wireless, 206, 278
installing cable TV, 272
international calling, 290
phone charges, 289
satellite dish, 799, 801
smartphones, 109
social networking, 109, 495, 501
spreading of rumors, 443, 457
Touch-Tone phones, 678, 723
Computers and computing
blu-ray drive, 524
DVD drive, 524
graphics, 778, 919-920
households owning PCs, 494
iPod data storage capacity, 290
laser printers, 145
tablets, 120
website design, 919
website map, 919
Word users, 494
Construction
of border around a garden, 119
of border around a pool, 119
of box, 116-117, 119, 936 closed, 276 open, 272
of brick staircase, 1004
of can, 403
of coffee can, 146
of cylindrical tube, 936
of enclosures around garden, 145 around pond, 145 maximizing area of, $312,316,325$
of fencing, $312,316,325,936$ minimum cost for, 392
of flashlight, 801
of headlight, 801
of highway, 548, 699, 725
installing cable TV, 272
patio dimensions, 119
pitch of roof, 689
of rain gutter, 317, 542-543, 673
of ramp, 698
access ramp, 187
of rectangular field enclosure, 316
of stadium, 317,981
of steel drum, 392
of swimming pool, 38, 39
of swing set, 707
of tent, 712
TV dish, 801
vent pipe installation, 813
of walk, 612
Cryptography
matrices in, 919
Decorating
Christmas tree, 33
Demographics
birth rate(s), 319, 1006
of unmarried women, 309
death rates, 1006
diversity index, 456
divorced population, 314-315
marital status, 1013
mosquito colony growth, 492
population. See Population
poverty rates, 349
rabbit colony growth, 974

Design

of awning, 700
of box with minimum surface area, 392
of fine decorative pieces, 549
of Little League Field, 526
of water sprinkler, 524
Direction
of aircraft, 772-773, 776
compass heading, 777
for crossing a river, 776
of fireworks display, 826
of lightning strikes, 826
of motorboat, 776
of swimmer, 788
Distance
Bermuda Triangle, 39
bicycle riding, 230
from Chicago to Honolulu, 628
circumference of Earth, 525
between cities, 519-520, 524
between Earth and Mercury, 700
between Earth and Venus, 700
from Earth to a star, 689
of explosion, 827
height
of aircraft, 698, 700
of bouncing ball, 990, 1004
of bridge, 698
of building, 612, 689
of cloud, 544-545
of CN Tower, 548
of Eiffel Tower, 547
of embankment, 689
of Ferris Wheel rider, 642
of Great Pyramid of Cheops, 39, 700
of helicopter, 725
of hot-air balloon, 548
of Lincoln's caricature on Mt. Rushmore, 548
of mountain, 695, 698
of Mt. Everest, 30
of One World Trade Center, 549
of statue on a building, 545
of tower, 547
of tree, 698
of Washington Monument, 548
of Willis Tower, 689
from home, 230
from Honolulu to Melbourne, Australia, 628
of hot-air balloon
to airport, 726
from intersection, 98
from intersection, 269-270, 271
length
of guy wire, 548, 549, 706
of lake, 610
of ski lift, 698
limiting magnitude of telescope, 508
to the Moon, 699
pendulum swings, 987,990
to plateau, 547
across a pond, 547
range of airplane, 145
reach of ladder, 548
of rotating beacon, 594
at sea, 699
of search and rescue, 161
from ship to Statue of Liberty, 612
to shore, $547,611,699$
between skyscrapers, 689
sound to measure, 136-137
of storm, 160
to tower, 700
traveled by wheel, 38
between two moving vehicles, 98
toward intersection, 271
between two objects, 548
visibility of Gibb's Hill Lighthouse beam, 39, 686-687, 690
visual, 39
walking, 230
width
of gorge, 547
of Mississippi River, 689
of river, 543-544, 611
Economics
Consumer Price Index (CPI), 483
demand equations, 405
federal stimulus package of 2009, 482
inflation, 482-483
IS-LM model in, 875
marginal propensity to consume, 991
multiplier, 991
participation rate, 221
per capita federal debt, 482
poverty rates, 349
poverty threshold, 98
relative income of child, 919
unemployment, 1034
Education
age distribution of community college, 1034
college costs, 482, 918
college value, 120
computing grades, 157
degrees awarded, 1010
doctorates, 1031
education savings account, 973
faculty composition, 1032
field trip, 400
funding a college education, 508
grades, 109
learning curve, 444,457
maximum level achieved, 960
multiple-choice test, 1020
spring break, 953,970
student loan, 277
interest on, 918
true/false test, 1020
tuition, 508
video games and grade-point average, 296
working students and GPA, 120
Electricity, 108
alternating current (ac), 611, 663
alternating current (ac) circuits, 585, 604
alternating current (ac) generators, 585-586
charging a capacitor, 723
cost of, 251-252
current in RC circuit, 444
current in RL circuit, 444, 457
impedance, 129
Kirchhoff's Rules, 875, 892
parallel circuits, 129
resistance in, 381
rates for, 157,187
resistance, 71, 73, 201, 204, 381
voltage
foreign, 30
household, 156
U.S., 30

Electronics
comparing tablets, 120
loudspeakers, 722
microphones, 172
sawtooth curve, 673, 723
Energy
nuclear power plant, 826
solar, 172, 784
solar heat, 802
thermostat control, 266-267
Engineering
bridges
clearance, 586
Golden Gate, 313-314
parabolic arch, 326,802
semielliptical arch, 812-813, 858
suspension, 317, 801
crushing load, 137
drive wheel, 690
electrical, 537
Gateway Arch (St. Louis), 802
grade of road, 188
horsepower, 201
lean of Leaning Tower of Pisa, 699
maximum weight supportable by pine, 198
moment of inertia, 678
piston engines, 547
product of inertia, 673
road system, 739
rods and pistons, 707
safe load for a beam, 201
searchlight, $651,801,858$
whispering galleries, 813
Entertainment
Demon Roller Coaster customer rate, 443
movie theater, 627
theater revenues, 875
Environment
endangered species, 443
invasive species, 494
lake pollution control laws, 973
oil leakage, 414
Finance, 108. See also Investment(s)
annuity, 990
balancing a checkbook, 30
bills in wallet, 1034
clothes shopping, 959
computer system purchase, 482
cost
of car, 109
of car rental, 254
of college, 482
of data plan, 229, 242-243
of driving a car, 187
of electricity, 251-252
of fast food, 874
of land, 725
minimizing, 326, 392
of natural gas, 254
of pizza, 108
of printing textbooks, 345-346
of transatlantic travel, 220, 229
of triangular lot, 712
cost equation, 200
cost function, 289
cost minimization, 308-309
credit cards
balance on, 927
debt, 973
interest on, 482
payment, 255, 973
depreciation, 442
of car, 474, 511
discounts, 415
division of money, 108, 139-140
electricity rates, 187
federal debt, 243
federal stimulus package of 2009, 482
financial planning, 139-140, 160, 874, 887-888, 891, 892, 944, 946, 947-948, 954
foreign exchange, 415
fraternity purchase, 120
funding a college education, 508
fundraising lottery, 391
future value of money, 350
gross salary, 220
growth of investment, 496-497
inheritance, 108
international calling plan, 290
life cycle hypothesis, 318
loans, 144
amortization schedule, 163
car, 973
home, 973
interest on, 139, 160, 163, 277,918
repayment of, 482
student, 918
mortgages
fees, 254
interest rates on, 482, 483-484
payments, 197, 200, 203, 971
second, 482
price appreciation of homes, 482
prices of fast food, 876
price vs. quantity demanded, 289
refunds, 875
revenue equation, 200
revenue maximization, 308, 310-311, 316
rich man's promise, 991
salary options, 991
sales commission, 157
saving
for a car, 482
for a home, 990
for spring break, 970
savings accounts interest, 482
selling price, 205
sinking fund, 990
taxes, 289
competitive balance, 289
e-Filing returns, 243
federal income, 254, 427
withholding, 415
used-car purchase, 482
water bills, 157
Food and nutrition
animal, 954
candy, 295
color mix of candy, 1034
cooler contents, 1034
cooling time of pizza, 493
fast food, 391, 874, 876
Girl Scout cookies, 1031
hospital diet, 876,891
hot dog and soda combinations, 290
ice cream, 953
"light" foods, 157
number of possible meals, 1010-1011
pig roasts, 493-494
warming time of beer stein, 493
Forensics
identifying remains, 706-707
Forestry
wood product classification, 491-492
Games
die rolling, 1034
grains of wheat on a chess board, 990
lottery, 1034, 1035
Gardens and gardening. See also Landscaping
border around, 119
enclosure for, 145
Geography
area of Bermuda Triangle, 713
area of lake, 712,725
inclination of hill, 785
inclination of mountain trail, 686, 725, 937
Geology
earthquakes, 457-458
Geometry
angle between two lines, 663
area of region, 525
balloon volume, 414
circle
area of, 143, 713
circumference of, 29,143
equation of, 902
inscribed in square, 271
length of chord of, 707
radius of, 936
collinear points, 902
cone volume, 201, 415
cube
length of edge of, 365
surface area of, 30
volume of, 30
cylinder
inscribing in cone, 272
inscribing in sphere, 271
volume of, 201, 415
Descartes's method of equal roots, 936-937
equation of line, 902
ladder angle, 726
polygon
area of, 902
diagonals of, 120
Pythagorean Theorem, 119
quadrilateral area, 713, 727
rectangle
area of, $29,220,269,276$
dimensions of, 109, 119, 160, 936
inscribed in ellipse, 813
inscribed in semicircle, 270, 674
perimeter of, 29
pleasing proportion for, 161
semicircle inscribed in, 270-271
regular dodecagon, 674
semicircle area, 712, 726
sphere
surface area of, 29
volume of, 29
square
area of, 144
perimeter of, 144
surface area
of balloon, 414
of cube, 30
of sphere, 29
triangle
area of, 29,38
area of, $712,713,727,902$
circumscribing, 701
equilateral, 29, 97
inscribed in circle, 271
isosceles, $97,220,537,727,936$
lengths of the legs, 161
medians of, 97
Pascal's, 974
right, 546, 688
sides of, 727
Government
federal debt, 243
federal income tax, 221, 254, 427
federal stimulus package of 2009, 482
federal tax withholding, 157
first-class mail, 255
per capita federal debt, 482
Health. See also Medicine
age versus total cholesterol, 503
blood pressure, 642
cigarette use among teens, 187
exercising, 157
expenditures on, 221
heartbeats during exercise, 283-284
ideal body weight, 427
life cycle hypothesis, 318
life expectancy, 156
Home improvement. See also Construction
painting a house, 876
painting a room, 595
Housing. See also Real estate
apartment rental, 318
number of rooms in, 220
price appreciation of homes, 482
prices for, 403

Investment(s), 105-106, 108, 144, 160, 509
annuity, 969-970
in bonds, 954
Treasuries, 891, 892, 944, 946, 947-948
zero-coupon, 479,483
in CDs, 478-479, 954
compound interest on, 475-476, 477, 478-479, 481
diversified, 876
doubling of, 480, 483
education savings account, 973
finance charges, 482
in fixed-income securities, 483, 954
401k, 990, 1004
growth of, 496-497
rate of, 481-482
IRA, 482, 973, 990 Roth, 973
return on, 482, 953, 954
savings account, 478
in stock
analyzing, 329
appreciation, 482
NASDAQ stocks, 1020
NYSE stocks, 1020
portfolios of, 1013
price of, 991
time to reach goal, 482, 483
tripling of, 480, 483
Landscaping. See also Gardens and gardening height of tree, 698
removing stump, 778
tree planting, 891
watering lawn, 523
Law and law enforcement
motor vehicle thefts, 1031
violent crimes, 221
Leisure and recreation
amusement park ride, 524
cable TV, 272
community skating rink, 277
Ferris wheel, 195, 525, 586, 642, 700, 722
field trip, 400
video games and grade-point average, 296
Measurement
optical methods of, 651
of rainfall, 785
Mechanics, 108. See also Physics
Medicine. See also Health
age versus total cholesterol, 503
blood pressure, 642
cancer, 443, 500
drug concentration, 242, 391
drug medication, 443,457
healing of wounds, 442,457
spreading of disease, 509
Meteorology
weather balloon height and atmospheric pressure, 498
Miscellaneous
banquet seating, 953
bending wire, 936
biorhythms, 586
carrying a ladder around a corner, 537, 594, 642-643
citrus ladders, 981
coffee container, 511
cross-sectional area of beam, 221, 228
curve fitting, $872,875,891,957$
diameter of copper wire, 30
drafting error, 98
Mandelbrot sets, 764
motor, 30
pet ownership, 1031
reading books, 157
sidewalk area, 538
surface area of balloon, 414
surveillance satellites, 690
volume of balloon, 414
wire enclosure area, 271
Mixtures. See also Chemistry
blending coffees, 140-141, 144, 161, 946, 957
blending teas, 144
cement, 146
mixed nuts, $144,874,946,958$
mixing candy, 144
solutions, 874
water and antifreeze, 145
Money. See Finance; Investment(s)
Motion, 722-723. See also Physics
catching a train, 858
on a circle, 524
of Ferris Wheel rider, 642
of golf ball, 228-229, 642
minute hand of clock, 523, 610
objects approaching intersection, 854
of pendulum, 723,726
revolutions of circular disk, 38
simulating, 848-849
tortoise and the hare race, 936
uniform, 141-142, 144, 854
Motor vehicles
alcohol and driving, 453, 458
approaching intersection, 854
automobile production, 414, 891
average car speed, 146
brake repair with tune-up, 1034
braking load, 785, 788
cost of driving a car, 187
crankshafts, 699
depreciation, 407, 474, 511
with Global Positioning System (GPS), 508
loans for, 973
markup of new car, 157
runaway car, 323
speed and miles per gallon, 318-319
spin balancing tires, 525
stopping distance, 221, 309, 427
used-car purchase, 482
windshield wiper, 524
Music
revenues from, 267
Navigation
avoiding a tropical storm, 706
bearing, $687,705,725$
of aircraft, 689
of ship, 689
charting a course, 777
commercial, 698
compass heading, 777
crossing a river, 776,777
error in
correcting, 703-704, 725
time lost due to, 698
rescue at sea, 695-696, 699
revising a flight plan, 706
Oceanography
tides, 605
Optics
angle of refraction, 643-644
bending light, 644
index of refraction, 643-644
intensity of light, 201
laser beam, 688
laser projection, 673
lensmaker's equation, 73
light obliterated through glass, 442
mirrors, 827
parabolic reflector, 859
reflecting telescope, 802

Pediatrics
height vs. head circumference, 427
Pets
dog roaming area, 525
Pharmacy
vitamin intake, 875, 892
Photography
camera distance, 548
Physics, 108
angle of elevation of Sun, 688
bouncing balls, 1004
braking load, 785
damped motion, 726
diameter of atom, 30
Doppler effect, 392
effect of elevation on weight, 229
falling objects, 200
force, 144, 776
to hold a wagon on a hill, 782-784
resultant, 776
of wind on a window, 199, 201
gravity, 381, 400
on Earth, 220, 427
on Jupiter, 220
harmonic motion, 717, 726
heat loss, 198, 203
heat transfer, 642
horsepower, 201
inclination of mountain trail, 686
intensity of light, 161, 201
kinetic energy, 144, 201
maximum weight supportable by pine, 198
missile trajectory, 329
moment of inertia, 678
motion of object, 717
Newton's law, 200
pendulum motion, 137, 523, 723, 726, 987
period, 267, 427
simple pendulum, 200
pressure, 144, 200
product of inertia, 673
projectile motion, 119, 312-313, 316-317, 546-547,
$560,642,643,668,673,678,847-848,853,854$, 858
artillery, $323,633,855$
thrown object, 853
safe load for a beam, 201
simulating motion, 848-849
sound
to measure distance, 136-137
speed of, 157
static equilibrium, 773-774, 777,788
stress of materials, 201
stretching a spring, 200, 726
tension, 773-774, 777, 788, 996
thrown object, 161
ball, 318, 323, 772
truck pulls, 778
uniform motion, 141-142, 144, 161, 271, 854, 858
velocity down inclined planes, 81
vertically propelled object, 323
vibrating string, 200
wavelength of visible light, 30
weight, 201, 203
of a boat, 776
of a car, 776
of a piano, 773
work, 144
Play
swinging, 727
wagon pulling, 776, 784
Population. See also Demographics
bacterial, 492, 494, 500
decline in, 492-493
E-coli growth, 243,282
of endangered species, 494
of fruit fly, 490-491
as function of age, 220
growth in, 492, 494, 495
insect, 381, 492, 495
of trout, 973
of United States, 474, 501, 1006
of world, 474, 502, 508, 961
Probability
checkout lines, 1031
classroom composition, 1032
exponential, 438-439, 443, 457
household annual income, 1031
Poisson, 443
Price is Right games, 1031
of same birthday in roomful of people, 494-495 of winning lottery, 1007, 1032
Psychometrics
IQ tests, 157
Publishing
textbook printing cost, 345-346
Pyrotechnics
fireworks display, 826
Rate. See also Speed
of car, 524
catching a bus, 854
catching a train, 853
current of stream, 875
of emptying
oil tankers, 145
a pool, 146
of filling, 146,161
to keep up with the Sun, 525
revolutions per minute
of bicycle wheels, 524
of pulleys, 526
speed
average, 146
of current, 144
of cyclists going in opposite directions, 146
of motorboat, 144
of moving walkways, 144
per gallon rate and, 318-319
of plane, 145,146
of sound, 157
Real estate
commission, 157
cost of triangular lot, 712
land cost, 725
mortgage fees, 254
property area, 712
saving for a home, 990
selling price of, 205
value of, 164
Recreation
bungee jumping, 400
Demon Roller Coaster customer rate, 443
online gambling, 1031
Security
security cameras, 689
Seismology
calibrating instruments, 858

Sequences. See also Combinatorics
ceramic tile floor design, 979
Drury Lane Theater, 981
football stadium seating, 981
seats in amphitheater, 981
Speed
of aircraft, 776
angular, 524, 610
of current, 525, 958
as function of time, 230, 271
linear, 521
on Earth, 524
of Moon, 524
revolutions per minute of pulley, 524-525
of rotation of lighthouse beacons, 610
of swimmer, 788
of truck, 688
of wheel pulling cable cars, 525
wind, 874
Sports
baseball, 854, 1021, 1033
diamond, 97
dimensions of home plate, 712
field, 706, 707
homeruns, 296
Little League, 97, 526
on-base percentage, 291-292
stadium, 706
World Series, 1021
basketball, 1021
free throws, 228, 689-690
granny shots, 228
biathlon, 146
bungee jumping, 400
calculating pool shots, 549
cycling, 146
exacta betting, 1034
football, 145, 813, 1021
field design, 120
golf, 228-229, 503, 642, 847-848, 854
distance to the green, 705
sand bunkers, 633
hammer throw, 612
marathon runners, 698
Olympic heroes, 146
races, 145, 162, 933-934, 936
relay runners, 1033
soccer, 707
swimming, 727,788
tennis, 144
Statistics. See Probability
Surveying
land dimensions, 698
Surveys
of appliance purchases, 1012
data analysis, 1009-1010, 1012
stock portfolios, 1013
of summer session attendance, 1012
of TV sets in a house, 1031

Temperature
of air parcel, 981
body, 30,156
conversion of, 415, 427
cooling time of pizza, 493
cricket chirp rate and, 319
measuring, 187
after midnight, 350
monthly, 604-605, 611
relationship between scales, 267
sinusoidal function from, 600-601
of skillet, 508
warming time of beer stein, 493
wind chill factor, 508
Time
for beer stein to warm, 493
for block to slide down inclined plane, 547
Ferris Wheel rider height as function of, 642
to go from an island to a town, 272
hours of daylight, 405-406, 512, 586, 601-602, 605-606, 613, 627
for pizza to cool, 493
for rescue at sea, 161
of sunrise, 525, 627
of trip, 536-537, 548-549
waiting, for fast food, 391
Transportation
deicing salt, 633
high-speed walkways, 144
Niagara Falls Incline Railway, 689
Travel. See also Air travel; Navigation drivers stopped by the police, 510
driving to school, 200
parking at O'Hare International
Airport, 253
Volume
of gasoline in tank, 81
of ice in skating rink, 277
of water in cone, 272

Weapons
artillery, 323, 633, 855
cannons, 329
Weather
atmospheric pressure, 442,457
avoiding a tropical storm, 706
cooling air, 981
hurricanes, 295, 349, 604
lightning and thunder, 160
lightning strikes, 823-824, 826
rainfall measurement, 785
relative humidity, 443
tornadoes, 295
weather satellites, 195
wind chill, 255, 508
Work, 784
computing, 782-784, 788
constant rate jobs, 958
pulling a wagon, 784
ramp angle, 785
wheelbarrow push, 776
working together, $143,145,161$

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations you encounter. You may wonder if you can learn it all in time. Don't worry, your concerns are normal. This text was written with you in mind. If you attend class, work hard, and read and study effectively, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't! The text provides a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class when you do this.

Use the Features

We use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from supplying a timely review of material you learned before (just when you need it), to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this book. Refer to the "Prepare for Class," "Practice," and "Review" guidelines on pages i-iii. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text.

Please do not hesitate to contact us, through Pearson Education, with any questions, comments, or suggestions about ways to improve this text. We look forward to hearing from you, and good luck with all of your studies.

Best Wishes!
Michael Sullivan
Michael Sullivan III

R
 Review

A Look Ahead

Chapter R, as the title states, contains review material. Your instructor may choose to cover all or part of it as a regular chapter at the beginning of your course or later as a just-in-time review when the content is required. Regardless, when information in this chapter is needed, a specific reference to this chapter will be made so you can review.

Outline

R. 1 Real Numbers
R. 2 Algebra Essentials
R. 3 Geometry Essentials
R. 4 Polynomials
R. 5 Factoring Polynomials
R. 6 Synthetic Division
R. 7 Rational Expressions
R. 8 nth Roots; Rational Exponents

PREPARING FOR THIS TEXT Before getting started, read "To the Student" at the front of this text.

```
OBJECTIVES 1 Work with Sets (p. 2)
2 Classify Numbers (p. 4)
3 Evaluate Numerical Expressions (p. 8)
4 \text { Work with Properties of Real Numbers (p. 10)}
```


1 Work with Sets

A set is a well-defined collection of distinct objects. The objects of a set are called its elements. By well-defined, we mean that there is a rule that enables us to determine whether a given object is an element of the set. If a set has no elements, it is called the empty set, or null set, and is denoted by the symbol \varnothing.

For example, the set of digits consists of the collection of numbers $0,1,2,3,4$, $5,6,7,8$, and 9 . If we use the symbol D to denote the set of digits, then we can write

$$
D=\{0,1,2,3,4,5,6,7,8,9\}
$$

In this notation, the braces $\{\quad\}$ are used to enclose the objects, or elements, in the set. This method of denoting a set is called the roster method. A second way to denote a set is to use set-builder notation, where the set D of digits is written as

Read as " D is the set of all x such that x is digit."

EXAMPLE 1 Using Set-builder Notation and the Roster Method

(a) $E=\{x \mid x$ is an even digit $\}=\{0,2,4,6,8\}$
(b) $O=\{x \mid x$ is an odd digit $\}=\{1,3,5,7,9\}$

Because the elements of a set are distinct, we never repeat elements. For example, we would never write $\{1,2,3,2\}$; the correct listing is $\{1,2,3\}$. Because a set is a collection, the order in which the elements are listed is immaterial. $\{1,2,3\}$, $\{1,3,2\},\{2,1,3\}$, and so on, all represent the same set.

If every element of a set A is also an element of a set B, then A is a subset of B, which is denoted $A \subseteq B$. If two sets A and B have the same elements, then A equals B, which is denoted $A=B$.

For example, $\{1,2,3\} \subseteq\{1,2,3,4,5\}$ and $\{1,2,3\}=\{2,3,1\}$.

DEFINITION

If A and B are sets, the intersection of A with B, denoted $A \cap B$, is the set consisting of elements that belong to both A and B. The union of A with B, denoted $A \cup B$, is the set consisting of elements that belong to either A or B, or both.

EXAMPLE 2 Finding the Intersection and Union of Sets

Let $A=\{1,3,5,8\}, B=\{3,5,7\}$, and $C=\{2,4,6,8\}$. Find:
(a) $A \cap B$
(b) $A \cup B$
(c) $B \cap(A \cup C)$

Solution

DEFINITION
(a) $A \cap B=\{1,3,5,8\} \cap\{3,5,7\}=\{3,5\}$
(b) $A \cup B=\{1,3,5,8\} \cup\{3,5,7\}=\{1,3,5,7,8\}$
(c) $B \cap(A \cup C)=\{3,5,7\} \cap[\{1,3,5,8\} \cup\{2,4,6,8\}]$

$$
=\{3,5,7\} \cap\{1,2,3,4,5,6,8\}=\{3,5\}
$$

amen Now Work problem 15
Usually, in working with sets, we designate a universal set U, the set consisting of all the elements that we wish to consider. Once a universal set has been designated, we can consider elements of the universal set not found in a given set.

If A is a set, the complement of A, denoted \bar{A}, is the set consisting of all the elements in the universal set that are not in A.*

EXAMPLE 3

Finding the Complement of a Set

If the universal set is $U=\{1,2,3,4,5,6,7,8,9\}$ and if $A=\{1,3,5,7,9\}$, then $\bar{A}=\{2,4,6,8\}$.

It follows from the definition of complement that $A \cup \bar{A}=U$ and $A \cap \bar{A}=\varnothing$. Do you see why?

```
Now Work problem 19
```

It is often helpful to draw pictures of sets. Such pictures, called Venn diagrams, represent sets as circles enclosed in a rectangle, which represents the universal set. Such diagrams often help us to visualize various relationships among sets. See Figure 1.

If we know that $A \subseteq B$, we might use the Venn diagram in Figure 2(a). If we know that A and B have no elements in common-that is, if $A \cap B=\varnothing$-we might use the Venn diagram in Figure 2(b). The sets A and B in Figure 2(b) are said to be disjoint.

(a) $A \subseteq B$ subset

(b) $A \cap B=\varnothing$ disjoint sets

Figures 3(a), 3(b), and 3(c) use Venn diagrams to illustrate the definitions of intersection, union, and complement, respectively.

(a) $A \cap B$ intersection

(b) $A \cup B$

(c) \bar{A} complement

[^0]
2 Classify Numbers

It is helpful to classify the various kinds of numbers that we deal with as sets. The counting numbers, or natural numbers, are the numbers in the set $\{1,2,3,4, \ldots\}$. (The three dots, called an ellipsis, indicate that the pattern continues indefinitely.) As their name implies, these numbers are often used to count things. For example, there are 26 letters in our alphabet; there are 100 cents in a dollar. The whole numbers are the numbers in the set $\{0,1,2,3, \ldots\}$-that is, the counting numbers together with 0 . The set of counting numbers is a subset of the set of whole numbers.

DEFINITION

DEFINITION

The integers are the set of numbers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

These numbers are useful in many situations. For example, if your checking account has $\$ 10$ in it and you write a check for $\$ 15$, you can represent the current balance as $-\$ 5$.

Each time we expand a number system, such as from the whole numbers to the integers, we do so in order to be able to handle new, and usually more complicated, problems. The integers enable us to solve problems requiring both positive and negative counting numbers, such as profit/loss, height above/below sea level, temperature above/below $0^{\circ} \mathrm{F}$, and so on.

But integers alone are not sufficient for all problems. For example, they do not answer the question "What part of a dollar is 38 cents?" To answer such a question, we enlarge our number system to include rational numbers. For example, $\frac{38}{100}$ answers the question "What part of a dollar is 38 cents?"

A rational number is a number that can be expressed as a quotient $\frac{a}{b}$ of two integers. The integer a is called the numerator, and the integer b, which cannot be 0 , is called the denominator. The rational numbers are the numbers in the set $\left\{x \left\lvert\, x=\frac{a}{b}\right.\right.$, where a, b are integers and $\left.b \neq 0\right\}$.

Examples of rational numbers are $\frac{3}{4}, \frac{5}{2}, \frac{0}{4},-\frac{2}{3}$, and $\frac{100}{3}$. Since $\frac{a}{1}=a$ for any integer a, it follows that the set of integers is a subset of the set of rational numbers.

Rational numbers may be represented as decimals. For example, the rational numbers $\frac{3}{4}, \frac{5}{2},-\frac{2}{3}$, and $\frac{7}{66}$ may be represented as decimals by merely carrying out the indicated division:
$\frac{3}{4}=0.75 \quad \frac{5}{2}=2.5 \quad-\frac{2}{3}=-0.666 \ldots=-0 . \overline{6} \quad \frac{7}{66}=0.1060606 \ldots=0.1 \overline{06}$ Notice that the decimal representations of $\frac{3}{4}$ and $\frac{5}{2}$ terminate, or end. The decimal representations of $-\frac{2}{3}$ and $\frac{7}{66}$ do not terminate, but they do exhibit a pattern of repetition. For $-\frac{2}{3}$, the 6 repeats indefinitely, as indicated by the bar over the 6 ; for $\frac{7}{66}$, the block 06 repeats indefinitely, as indicated by the bar over the 06 . It can be shown that every rational number may be represented by a decimal that either terminates or is nonterminating with a repeating block of digits, and vice versa.

On the other hand, some decimals do not fit into either of these categories. Such decimals represent irrational numbers. Every irrational number may be represented by a decimal that neither repeats nor terminates. In other words, irrational numbers cannot be written in the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$.

Irrational numbers occur naturally. For example, consider the isosceles right triangle whose legs are each of length 1 . See Figure 4. The length of the hypotenuse is $\sqrt{2}$, an irrational number.

Also, the number that equals the ratio of the circumference C to the diameter d of any circle, denoted by the symbol π (the Greek letter pi), is an irrational number. See Figure 5.

Figure 4

Figure $5 \pi=\frac{C}{d}$

DEFINITION

The set of real numbers is the union of the set of rational numbers with the set of irrational numbers.

Figure 6 shows the relationship of various types of numbers.*

Figure 6

EXAMPLE 4 Classifying the Numbers in a Set

List the numbers in the set

$$
\left\{-3, \frac{4}{3}, 0.12, \sqrt{2}, \pi, 10,2.151515 \ldots(\text { where the block } 15 \text { repeats })\right\}
$$

that are
(a) Natural numbers
(b) Integers
(c) Rational numbers
(d) Irrational numbers
(e) Real numbers

Solution (a) 10 is the only natural number.
(b) -3 and 10 are integers.
(c) $-3,10, \frac{4}{3}, 0.12$, and $2.151515 \ldots$ are rational numbers.
(d) $\sqrt{2}$ and π are irrational numbers.
(e) All the numbers listed are real numbers.

mow Work problem 25

*The set of real numbers is a subset of the set of complex numbers. We discuss complex numbers in Chapter 1, Section 1.4.

Approximations

Every decimal may be represented by a real number (either rational or irrational), and every real number may be represented by a decimal.

In practice, the decimal representation of an irrational number is given as an approximation. For example, using the symbol \approx (read as "approximately equal to"), we can write

$$
\sqrt{2} \approx 1.4142 \quad \pi \approx 3.1416
$$

In approximating decimals, we either round off or truncate to a given number of decimal places.* The number of places establishes the location of the final digit in the decimal approximation.

Truncation: Drop all of the digits that follow the specified final digit in the decimal.

Rounding: Identify the specified final digit in the decimal. If the next digit is 5 or more, add 1 to the final digit; if the next digit is 4 or less, leave the final digit as it is. Then truncate following the final digit.

EXAMPLE 5 Approximating a Decimal to Two Places

Approximate 20.98752 to two decimal places by
(a) Truncating
(b) Rounding

Solution For 20.98752, the final digit is 8 , since it is two decimal places from the decimal point.
(a) To truncate, we remove all digits following the final digit 8 . The truncation of 20.98752 to two decimal places is 20.98 .
(b) The digit following the final digit 8 is the digit 7 . Since 7 is 5 or more, we add 1 to the final digit 8 and truncate. The rounded form of 20.98752 to two decimal places is 20.99 .

EXAMPLE 6 Approximating a Decimal to Two and Four Places

	Rounded to Two Decimal	Rounded to Four Decimal	Truncated to Two Decimal Places	Truncated to Four Decimal
Number	3.14	3.1416	3.14	Places
(a) 3.14159	0.06	0.0561	0.05	3.1415
(b) 0.056128	893.46	893.4613	893.46	0.0561
(c) 893.46125			893.4612	

Now Work problem 29

Significant Digits

There are two types of numbers-exact and approximate. Exact numbers are numbers whose value is known with 100% certainty and accuracy. For example, there are 12 donuts in a dozen donuts, or there are 50 states in the United States.

Approximate numbers are numbers whose value is not known with 100% certainty or whose measurement is inexact. When values are determined from measurements they are typically approximate numbers because the exact measurement is limited by the accuracy of the measuring device and the skill of the individual obtaining the measurement. The number of significant digits in a number represents the level of accuracy of the measurement.

The following rules are used to determine the number of significant digits in approximate numbers.

The Number of Significant Digits

- Leading zeros are not significant. For example, 0.0034 has two significant digits.
- Embedded zeros are significant. For example, 208 has three significant digits.
- Trailing zeros are significant only if the decimal point is specified. For example, 2800 has two significant digits. However, if we specify the measurement is accurate to the ones digit, then 2800 has four significant digits.

When performing computations with approximate numbers, it is important not to report the result with more accuracy than the measurements used in the computation.

When performing computations using significant digits, proceed with the computation as you normally would, then round the final answer to the number of significant digits as the least accurately known number. For example, suppose we want to find the area of a rectangle whose width is 1.94 inches (three significant digits) and whose length is 2.7 inches (two significant digits). Because the length has two significant digits, we report the area to two significant digits. The area, (1.94 inches) (2.7 inches) $=5.238$ square inches, can only be written to two significant digits and is reported as 5.2 square inches.

Calculators

Calculators are incapable of displaying decimals that contain a large number of digits. For example, some calculators are capable of displaying only eight digits. When a number requires more than eight digits, the calculator either truncates or rounds. To see how your calculator handles decimals, divide 2 by 3 . How many digits do you see? Is the last digit a 6 or a 7 ? If it is a 6 , your calculator truncates; if it is a 7 , your calculator rounds.

There are different kinds of calculators. An arithmetic calculator can only add, subtract, multiply, and divide numbers; therefore, this type is not adequate for this course. Scientific calculators have all the capabilities of arithmetic calculators and contain function keys labeled $\ln , \log , \sin , \cos , \tan , x^{y}$, inv, and so on. Graphing calculators have all the capabilities of scientific calculators and contain a screen on which graphs can be displayed. As you proceed through this text, you will discover how to use many of the function keys.

Figure 7 shows $\frac{2}{3}$ on a TI-84 Plus C graphing calculator. How many digits are displayed? Does a TI-84 Plus C round or truncate? What does your calculator do?

Operations

In algebra, we use letters such as x, y, a, b, and c to represent numbers. The symbols used in algebra for the operations of addition, subtraction, multiplication, and division are,,$+- \cdot$, and $/$. The words used to describe the results of these
operations are sum, difference, product, and quotient. Table 1 summarizes these ideas.

Table 1

Operation	Symbol	Words
Addition	$a+b$	Sum: a plus b
Subtraction	$a-b$	Difference: a minus b
Multiplication	$a \cdot b,(a) \cdot b, a \cdot(b),(a) \cdot(b)$, $a b,(a) b, a(b),(a)(b)$ Division	Product: a times b
	a / b or $\frac{a}{b}$	Quotient: a divided by b

In algebra, we generally avoid using the multiplication sign \times and the division sign \div so familiar in arithmetic. Notice also that when two expressions are placed next to each other without an operation symbol, as in $a b$, or in parentheses, as in $(a)(b)$, it is understood that the expressions, called factors, are to be multiplied.

We also prefer not to use mixed numbers in algebra. When mixed numbers are used, addition is understood; for example, $2 \frac{3}{4}$ means $2+\frac{3}{4}$. In algebra, use of a mixed number may be confusing because the absence of an operation symbol between two terms is generally taken to mean multiplication. The expression $2 \frac{3}{4}$ is therefore written instead as 2.75 or as $\frac{11}{4}$.

The symbol $=$, called an equal sign and read as "equals" or "is," is used to express the idea that the number or expression on the left of the equal sign is equivalent to the number or expression on the right.

EXAMPLE 7 Writing Statements Using Symbols

(a) The sum of 2 and 7 equals 9. In symbols, this statement is written as $2+7=9$.
(b) The product of 3 and 5 is 15 . In symbols, this statement is written as $3 \cdot 5=15$.

Now Work problem 41

3 Evaluate Numerical Expressions

Consider the expression $2+3 \cdot 6$. It is not clear whether we should add 2 and 3 to get 5 , and then multiply by 6 to get 30 ; or first multiply 3 and 6 to get 18 , and then add 2 to get 20 . To avoid this ambiguity, we have the following agreement.

In Words
Multiply first, then add.

We agree that whenever the two operations of addition and multiplication separate three numbers, the multiplication operation will always be performed first, followed by the addition operation.

For $2+3 \cdot 6$, then, we have

$$
2+3 \cdot 6=2+18=20
$$

EXAMPLE 8 Finding the Value of an Expression

Evaluate each expression.
(a) $3+4 \cdot 5$
(b) $8 \cdot 2+1$
(c) $2+2 \cdot 2$

Solution

Figure 8
(a) $3+4 \cdot 5=3+20=23$
(b) $8 \cdot 2+1=16+1=17$
\uparrow
Multiply first.
\uparrow
Multiply first.
(c) $2+2 \cdot 2=2+4=6$

Figure 8 shows the solution to Example 8 using a TI-84 Plus C graphing calculator. Notice that the calculator follows the agreed order of operations.
m- Now Work problem 53

When we want to indicate adding 3 and 4 and then multiplying the result by 5 , we use parentheses and write $(3+4) \cdot 5$. Whenever parentheses appear in an expression, it means "perform the operations within the parentheses first!"

EXAMPLE 9 Finding the Value of an Expression

(a) $(5+3) \cdot 4=8 \cdot 4=32$
(b) $(4+5) \cdot(8-2)=9 \cdot 6=54$

When we divide two expressions, as in

$$
\frac{2+3}{4+8}
$$

it is understood that the division bar acts like parentheses; that is,

$$
\frac{2+3}{4+8}=\frac{(2+3)}{(4+8)}
$$

Rules for the Order of Operations

1. Begin with the innermost parentheses and work outward. Remember that in dividing two expressions, we treat the numerator and denominator as if they were enclosed in parentheses.
2. Perform multiplications and divisions, working from left to right.
3. Perform additions and subtractions, working from left to right.

EXAMPLE 10 Finding the Value of an Expression

Evaluate each expression.
(a) $8 \cdot 2+3$
(b) $5 \cdot(3+4)+2$
(c) $\frac{2+5}{2+4 \cdot 7}$
(d) $2+[4+2 \cdot(10+6)]$

Solution
(a) $8 \cdot 2+3 \underset{\uparrow}{=} 16+3=19$

Multiply first.
(b) $5 \cdot(3+4)+2=5 \cdot 7+2=35+2=37$

Parentheses first Multiply before adding.

[^0]: *Some texts use the notation A^{\prime} for the complement of A.

